Recently published - More

Abstract

The parathyroid hormone 1 receptor (PTH1R) mediates the biologic actions of parathyroid hormone (PTH) and parathyroid hormone–related protein (PTHrP). Here, we showed that salt-inducible kinases (SIKs) are key kinases that control the skeletal actions downstream of PTH1R and that this GPCR, when activated, inhibited cellular SIK activity. Sik gene deletion led to phenotypic changes that were remarkably similar to models of increased PTH1R signaling. In growth plate chondrocytes, PTHrP inhibited SIK3, and ablation of this kinase in proliferating chondrocytes rescued perinatal lethality of PTHrP-null mice. Combined deletion of Sik2 and Sik3 in osteoblasts and osteocytes led to a dramatic increase in bone mass that closely resembled the skeletal and molecular phenotypes observed when these bone cells express a constitutively active PTH1R that causes Jansen’s metaphyseal chondrodysplasia. Finally, genetic evidence demonstrated that class IIa histone deacetylases were key PTH1R-regulated SIK substrates in both chondrocytes and osteocytes. Taken together, our findings establish that SIK inhibition is central to PTH1R action in bone development and remodeling. Furthermore, this work highlights the key role of cAMP-regulated SIKs downstream of GPCR action.

Authors

Shigeki Nishimori, Maureen J. O’Meara, Christian D. Castro, Hiroshi Noda, Murat Cetinbas, Janaina da Silva Martins, Ugur Ayturk, Daniel J. Brooks, Michael Bruce, Mizuki Nagata, Wanida Ono, Christopher J. Janton, Mary L. Bouxsein, Marc Foretz, Rebecca Berdeaux, Ruslan I. Sadreyev, Thomas J. Gardella, Harald Jüppner, Henry M. Kronenberg, Marc N. Wein

×

Abstract

Delayed ischemic neurological deficit (DIND) is a major driver of adverse outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH), defining an unmet need for therapeutic development. Cell-free hemoglobin that is released from erythrocytes into the cerebrospinal fluid (CSF) is suggested to cause vasoconstriction and neuronal toxicity, and correlates with the occurrence of DIND. Cell-free hemoglobin in the CSF of patients with aSAH disrupted dilatory NO signaling ex vivo in cerebral arteries, which shifted vascular tone balance from dilation to constriction. We found that selective removal of hemoglobin from patient CSF with a haptoglobin-affinity column or its sequestration in a soluble hemoglobin-haptoglobin complex was sufficient to restore physiological vascular responses. In a sheep model, administration of haptoglobin into the CSF inhibited hemoglobin-induced cerebral vasospasm and preserved vascular NO signaling. We identified 2 pathways of hemoglobin delocalization from CSF into the brain parenchyma and into the NO-sensitive compartment of small cerebral arteries. Both pathways were critical for hemoglobin toxicity and were interrupted by the large hemoglobin-haptoglobin complex that inhibited spatial requirements for hemoglobin reactions with NO in tissues. Collectively, our data show that compartmentalization of hemoglobin by haptoglobin provides a novel framework for innovation aimed at reducing hemoglobin-driven neurological damage after subarachnoid bleeding.

Authors

Michael Hugelshofer, Raphael M. Buzzi, Christian A. Schaer, Henning Richter, Kevin Akeret, Vania Anagnostakou, Leila Mahmoudi, Raphael Vaccani, Florence Vallelian, Jeremy W. Deuel, Peter W. Kronen, Zsolt Kulcsar, Luca Regli, Jin Hyen Baek, Ivan S. Pires, Andre F. Palmer, Matthias Dennler, Rok Humar, Paul W. Buehler, Patrick R. Kircher, Emanuela Keller, Dominik J. Schaer

×

Abstract

During developmental angiogenesis, blood vessels grow and remodel to ultimately build a hierarchical vascular network. Whether and how cell death signaling molecules contribute to blood vessel formation are still not well understood. Caspase-8 (Casp-8), a key protease in the extrinsic cell death–signaling pathway, regulates cell death via both apoptosis and necroptosis. Here, we show that expression of Casp-8 in endothelial cells (ECs) is required for proper postnatal retina angiogenesis. EC-specific Casp-8–KO pups (Casp-8ECKO) showed reduced retina angiogenesis, as the loss of Casp-8 reduced EC proliferation, sprouting, and migration independently of its cell death function. Instead, the loss of Casp-8 caused hyperactivation of p38 MAPK downstream of receptor-interacting serine/threonine protein kinase 3 (RIPK3) and destabilization of vascular endothelial cadherin (VE-cadherin) at EC junctions. In a mouse model of oxygen-induced retinopathy (OIR) resembling retinopathy of prematurity (ROP), loss of Casp-8 in ECs was beneficial, as pathological neovascularization was reduced in Casp-8ECKO pups. Taking these data together, we show that Casp-8 acts in a cell death–independent manner in ECs to regulate the formation of the retina vasculature and that Casp-8 in ECs is mechanistically involved in the pathophysiology of ROP.

Authors

Nathalie Tisch, Aida Freire-Valls, Rosario Yerbes, Isidora Paredes, Silvia La Porta, Xiaohong Wang, Rosa Martín-Pérez, Laura Castro, Wendy Wei-Lynn Wong, Leigh Coultas, Boris Strilic, Hermann-Josef Gröne, Thomas Hielscher, Carolin Mogler, Ralf H. Adams, Peter Heiduschka, Lena Claesson-Welsh, Massimiliano Mazzone, Abelardo López-Rivas, Thomas Schmidt, Hellmut G. Augustin, Carmen Ruiz de Almodovar

×

Abstract

The transcription factor B cell CLL/lymphoma 11B (BCL11B) is indispensable for T lineage development of lymphoid progenitors. Here, we show that chimeric antigen receptor (CAR) expression during early phases of ex vivo generation of lymphoid progenitors suppressed BCL11B, leading to suppression of T cell–associated gene expression and acquisition of NK cell–like properties. Upon adoptive transfer into hematopoietic stem cell transplant recipients, CAR-expressing lymphoid progenitors differentiated into CAR-induced killer (CARiK) cells that mediated potent antigen-directed antileukemic activity even across MHC barriers. CD28 and active immune receptor tyrosine-based activation motifs were critical for a functional CARiK phenotype. These results give important insights into differentiation of murine and human lymphoid progenitors driven by synthetic CAR transgene expression and encourage further evaluation of ex vivo–generated CARiK cells for targeted immunotherapy.

Authors

Marcel Maluski, Arnab Ghosh, Jessica Herbst, Vanessa Scholl, Rolf Baumann, Jochen Huehn, Robert Geffers, Johann Meyer, Holger Maul, Britta Eiz-Vesper, Andreas Krueger, Axel Schambach, Marcel R. M. van den Brink, Martin G. Sauer

×

Abstract

Patients with paroxysmal nocturnal hemoglobinuria (PNH) have a clonal population of blood cells deficient in glycosylphosphatidylinositol-anchored (GPI-anchored) proteins, resulting from a mutation in the X-linked gene PIGA. Here we report on a set of patients in whom PNH results instead from biallelic mutation of PIGT on chromosome 20. These PIGT-PNH patients have clinically typical PNH, but they have in addition prominent autoinflammatory features, including recurrent attacks of aseptic meningitis. In all these patients we find a germ-line point mutation in one PIGT allele, whereas the other PIGT allele is removed by somatic deletion of a 20q region comprising maternally imprinted genes implicated in myeloproliferative syndromes. Unlike in PIGA-PNH cells, GPI is synthesized in PIGT-PNH cells and, since its attachment to proteins is blocked, free GPI is expressed on the cell surface. From studies of patients’ leukocytes and of PIGT-KO THP-1 cells we show that, through increased IL-1β secretion, activation of the lectin pathway of complement and generation of C5b-9 complexes, free GPI is the agent of autoinflammation. Eculizumab treatment abrogates not only intravascular hemolysis, but also autoinflammation. Thus, PIGT-PNH differs from PIGA-PNH both in the mechanism of clonal expansion and in clinical manifestations.

Authors

Britta Höchsmann, Yoshiko Murakami, Makiko Osato, Alexej Knaus, Michi Kawamoto, Norimitsu Inoue, Tetsuya Hirata, Shogo Murata, Markus Anliker, Thomas Eggerman, Marten Jäger, Ricarda Floettmann, Alexander Höllein, Sho Murase, Yasutaka Ueda, Jun-ichi Nishimura, Yuzuru Kanakura, Nobuo Kohara, Hubert Schrezenmeier, Peter M. Krawitz, Taroh Kinoshita

×

Abstract

Bone is richly innervated by nerve growth factor–responsive (NGF-responsive) tropomyosin receptor kinase A–expressing (TrKa-expressing) sensory nerve fibers, which are required for osteochondral progenitor expansion during mammalian skeletal development. Aside from pain sensation, little is known regarding the role of sensory innervation in bone repair. Here, we characterized the reinnervation of tissue following experimental ulnar stress fracture and assessed the impact of loss of TrkA signaling in this process. Sequential histological data obtained in reporter mice subjected to fracture demonstrated a marked upregulation of NGF expression in periosteal stromal progenitors and fracture-associated macrophages. Sprouting and arborization of CGRP+TrkA+ sensory nerve fibers within the reactive periosteum in NGF-enriched cellular domains were evident at time points preceding periosteal vascularization, ossification, and mineralization. Temporal inhibition of TrkA catalytic activity by administration of 1NMPP1 to TrkAF592A mice significantly reduced the numbers of sensory fibers, blunted revascularization, and delayed ossification of the fracture callus. We observed similar deficiencies in nerve regrowth and fracture healing in a mouse model of peripheral neuropathy induced by paclitaxel treatment. Together, our studies demonstrate an essential role of TrkA signaling for stress fracture repair and implicate skeletal sensory nerves as an important upstream mediator of this repair process.

Authors

Zhu Li, Carolyn A. Meyers, Leslie Chang, Seungyong Lee, Zhi Li, Ryan Tomlinson, Ahmet Hoke, Thomas L. Clemens, Aaron W. James

×

Abstract

Antagonists of the type 1 cysteinyl leukotriene receptor (CysLT1R) are widely used to treat asthma and allergic rhinitis, with variable response rates. Alveolar macrophages express UDP-specific P2Y6 receptors that can be blocked by off-target effects of CysLT1R antagonists. Sensitizing intranasal doses of an extract from the house dust mite Dermatophagoides farinae (Df) sharply increased the levels of UDP detected in bronchoalveolar lavage fluid of mice. Conditional deletion of P2Y6 receptors before sensitization exacerbated eosinophilic lung inflammation and type 2 cytokine production in response to subsequent Df challenge. P2Y6 receptor signaling was necessary for dectin-2–dependent production of protective IL-12p40 and Th1 chemokines by alveolar macrophages, leading to activation of NK cells to generate IFN-γ. Administration of CysLT1R antagonists during sensitization blocked UDP-elicited potentiation of IL-12p40 production by macrophages in vitro, suppressed the Df-induced production of IL-12p40 and IFN-γ in vivo, and suppressed type 2 inflammation only in P2Y6-deficient mice. Thus, P2Y6 receptor signaling drives an innate macrophage/IL-12/NK cell/IFN-γ axis that prevents inappropriate allergic type 2 immune responses on respiratory allergen exposure and counteracts the Th2 priming effect of CysLT1R signaling at sensitization. Targeting P2Y6 signaling might prove to be a potential additional treatment strategy for allergy.

Authors

Jun Nagai, Barbara Balestrieri, Laura B. Fanning, Timothy Kyin, Haley Cirka, Junrui Lin, Marco Idzko, Andreas Zech, Edy Y. Kim, Patrick J. Brennan, Joshua A. Boyce

×

Abstract

With the approval of CD19-targeted chimeric antigen receptor (CAR) T cells for the treatment of B cell malignancies, clinicians have gained valuable insights into the power and challenges of cellular therapies. In this issue of the JCI, Maluski et al. showed that a CAR containing a CD28 costimulatory domain drives progeny differentiation to resemble that of NK cells, which have the potential for an off-the-shelf cell therapy. These CAR-induced killer (CARiK) cells displayed potent antitumor function and killed across the MHC barrier in vivo. After performing in vitro and in vivo mouse studies, the authors also successfully differentiated human umbilical cord blood–derived progenitor cells into CARiK cells. These unique cells may address some of the current challenges associated with first-generation CARs, such as prolonged production that requires patients to wait weeks for infusion. We believe this innovative progenitor gene-engineered lymphoid system has the potential for clinical translation.

Authors

Brigett D. Brandjes, Marco L. Davila

×

Abstract

Tumor-associated macrophages (TAMs) usually display an antiinflammatory M2-like phenotype to facilitate tumor growth. However, what drives M2 polarization of TAMs and how TAMs suppress antitumor immunity within the tumor microenvironment (TME) remain largely undefined. Using several murine tumor models, we showed that hedgehog (Hh) signaling in myeloid cells is critical for TAM M2 polarization and tumor growth. We also found that tumor cells secrete sonic hedgehog (SHH), an Hh ligand, and that tumor-derived SHH drives TAM M2 polarization. Furthermore, Hh-induced functional polarization in TAMs suppresses CD8+ T cell recruitment to the TME through the inhibition of CXCL9 and CXCL10 production by TAMs. Last, we demonstrated that Krüppel-like factor 4 (Klf4) mediates Hh-dependent TAM M2 polarization and the immunosuppressive function. Collectively, these findings highlight a critical role for tumor-derived SHH in promoting TAM M2 polarization, a mechanism for TAM-mediated immunosuppression, and may provide insights into the design of new cancer immunotherapeutic strategies.

Authors

Amy J. Petty, Ang Li, Xinyi Wang, Rui Dai, Benjamin Heyman, David Hsu, Xiaopei Huang, Yiping Yang

×

Abstract

Gout is caused by deposition of monosodium urate crystals in joints when plasma uric acid levels are chronically elevated beyond the saturation threshold, mostly due to renal underexcretion of uric acid. Although molecular pathways of this underexcretion have been elucidated, its etiology remains mostly unknown. We demonstrate that gout can be caused by a mutation in LDHD within the putative catalytic site of the encoded d-lactate dehydrogenase, resulting in augmented blood levels of d-lactate, a stereoisomer of l-lactate, which is normally present in human blood in miniscule amounts. Consequent excessive renal secretion of d-lactate in exchange for uric acid reabsorption culminated in hyperuricemia and gout. We showed that LDHD expression is enriched in tissues with a high metabolic rate and abundant mitochondria and that d-lactate dehydrogenase resides in the mitochondria of cells overexpressing the human LDHD gene. Notably, the p.R370W mutation had no effect on protein localization. In line with the human phenotype, injection of d-lactate into naive mice resulted in hyperuricemia. Thus, hyperuricemia and gout can result from the accumulation of metabolites whose renal excretion is coupled to uric acid reabsorption.

Authors

Max Drabkin, Yuval Yogev, Lior Zeller, Raz Zarivach, Ran Zalk, Daniel Halperin, Ohad Wormser, Evgenia Gurevich, Daniel Landau, Rotem Kadir, Yonatan Perez, Ohad S. Birk

×

Abstract

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired disorder characterized by hemolysis, thrombosis, and bone marrow failure caused by defective expression of glycosylphosphatidylinositol-anchored (GPI-anchored) complement inhibitors. Most commonly, PNH is caused by loss of function of PIGA, which is required for GPI biosynthesis. In this issue of the JCI, Höchsmann et al. report on 4 PNH patients who also had marked autoinflammatory manifestations, including aseptic meningitis. All 4 patients had a germline mutation of the related gene PIGT and a somatically acquired myeloid common deleted region (CDR) on chromosome 20q that deleted the second PIGT allele. The biochemistry and clinical manifestations indicate that these patients have subtle but important differences from those with PNH resulting from PIGA mutations, suggesting PIGT-PNH may be a distinct clinical entity.

Authors

Robert A. Brodsky

×

Abstract

Overexpression of myo-inositol oxygenase (MIOX), a proximal tubular enzyme, exacerbates cellular redox injury in acute kidney injury (AKI). Ferroptosis, a newly coined term associated with lipid hydroperoxidation, plays a critical role in the pathogenesis of AKI. Whether or not MIOX exacerbates tubular damage by accelerating ferroptosis in cisplatin-induced AKI remains elusive. Cisplatin-treated HK-2 cells exhibited notable cell death, which was reduced by ferroptosis inhibitors. Also, alterations in various ferroptosis metabolic sensors, including lipid hydroperoxidation, glutathione peroxidase 4 (GPX4) activity, NADPH and reduced glutathione (GSH) levels, and ferritinophagy, were observed. These perturbations were accentuated by MIOX overexpression, while ameliorated by MIOX knockdown. Likewise, cisplatin-treated CD1 mice exhibited tubular damage and derangement of renal physiological parameters, which were alleviated by ferrostatin-1, a ferroptosis inhibitor. To investigate the relevance of MIOX to ferroptosis, WT mice, MIOX-overexpressing transgenic (MIOX-Tg) mice, and MIOX-KO mice were subjected to cisplatin treatment. In comparison with cisplatin-treated WT mice, cisplatin-treated MIOX-Tg mice had more severe renal pathological changes and perturbations in ferroptosis metabolic sensors, which were minimal in cisplatin-treated MIOX-KO mice. In conclusion, these findings indicate that ferroptosis, an integral process in the pathogenesis of cisplatin-induced AKI, is modulated by the expression profile of MIOX.

Authors

Fei Deng, Isha Sharma, Yingbo Dai, Ming Yang, Yashpal S. Kanwar

×

Abstract

We hypothesized that the store-operated calcium entry (SOCE) channel, Orai1, participates in the activation of Th17 cells and influences renal injury. In rats, following renal ischemia/reperfusion (I/R), there was a rapid and sustained influx of Orai1+ CD4 T cells and IL-17 expression was restricted to Orai1+ cells. When kidney CD4+ cells of post–acute kidney injury (post-AKI) rats were stimulated with angiotensin II and elevated Na+ (10–7 M/170 mM) in vitro, there was an enhanced response in intracellular Ca2+ and IL-17 expression, which was blocked by SOCE inhibitors 2APB, YM58483/BTP2, or AnCoA4. In vivo, YM58483/BTP2 (1 mg/kg) attenuated IL-17+ cell activation, inflammation, and severity of AKI following either I/R or intramuscular glycerol injection. Rats treated with high-salt diet (5–9 weeks after I/R) manifested progressive disease indicated by enhanced inflammation, fibrosis, and impaired renal function. These responses were significantly attenuated by YM58483/BTP2. In peripheral blood of critically ill patients, Orai1+ cells were significantly elevated by approximately 10-fold and Th17 cells were elevated by approximately 4-fold in AKI versus non-AKI patients. Further, in vitro stimulation of CD4+ cells from AKI patients increased IL-17, which was blocked by SOCE inhibitors. These data suggest that Orai1 SOCE is a potential therapeutic target in AKI and CKD progression.

Authors

Purvi Mehrotra, Michael Sturek, Javier A. Neyra, David P. Basile

×

Abstract

The interleukin-3 receptor α subunit, CD123, is expressed in many hematologic malignancies including acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm (BPDCN). Tagraxofusp (SL-401) is a CD123-targeted therapy consisting of interleukin-3 fused to a truncated diphtheria toxin payload. Factors influencing response to tagraxofusp other than CD123 expression are largely unknown. We interrogated tagraxofusp resistance in patients and experimental models and found that it was not associated with CD123 loss. Rather, resistant AML and BPDCN cells frequently acquired deficiencies in the diphthamide synthesis pathway, impairing tagraxofusp’s ability to ADP-ribosylate cellular targets. Expression of DPH1, encoding a diphthamide pathway enzyme, was reduced by DNA CpG methylation in resistant cells. Treatment with the DNA methyltransferase inhibitor azacitidine restored DPH1 expression and tagraxofusp sensitivity. We also developed a drug-dependent ADP-ribosylation assay in primary cells that correlated with tagraxofusp activity and may represent an additional novel biomarker. As predicted by these results and our observation that resistance also increased mitochondrial apoptotic priming, we found that the combination of tagraxofusp and azacitidine was effective in patient-derived xenografts treated in vivo. These data have important implications for clinical use of tagraxofusp and led to a phase 1 study combining tagraxofusp and azacitidine in myeloid malignancies.

Authors

Katsuhiro Togami, Timothy Pastika, Jason Stephansky, Mahmoud Ghandi, Amanda L. Christie, Kristen L. Jones, Carl A. Johnson, Ross W. Lindsay, Christopher L. Brooks, Anthony Letai, Jeffrey W. Craig, Olga Pozdnyakova, David M. Weinstock, Joan Montero, Jon C. Aster, Cory M. Johannessen, Andrew A. Lane

×

Abstract

T cell autoreactivity is a hallmark of autoimmune diseases but can also benefit self-maintenance and foster tissue repair. Here, we investigated whether heart-specific T cells exert salutary or detrimental effects in the context of myocardial infarction (MI), the leading cause of death worldwide. After screening more than 150 class II–restricted epitopes, we found that myosin heavy chain α (MYHCA) was a dominant cardiac antigen triggering post-MI CD4+ T cell activation in Balb/c mice. Transferred MYHCA614–629-specific CD4+ T cells (TCR-M cells) selectively accumulated in the myocardium and mediastinal lymph nodes (med-LNs) of infarcted mice, acquired a Treg phenotype with a distinct prohealing gene expression profile, and mediated cardioprotection. Myocardial Tregs were also detected in autopsy samples from patients who had had a MI. Noninvasive PET/CT imaging using a CXCR4 radioligand revealed enlarged med-LNs with increased cellularity in patients with MI. Notably, the med-LN alterations observed in MI patients correlated with the infarct size and cardiac function. Taken together, the results obtained in our study provide evidence that MI context induces prohealing T cell autoimmunity in mice and confirm the existence of an analogous heart/med-LN/T cell axis in patients with MI.

Authors

Max Rieckmann, Murilo Delgobo, Chiara Gaal, Lotte Büchner, Philipp Steinau, Dan Reshef, Cristina Gil-Cruz, Ellis N. ter Horst, Malte Kircher, Theresa Reiter, Katrin G. Heinze, Hans W.M. Niessen, Paul A.J. Krijnen, Anja M. van der Laan, Jan J. Piek, Charlotte Koch, Hans-Jürgen Wester, Constantin Lapa, Wolfgang R. Bauer, Burkhard Ludewig, Nir Friedman, Stefan Frantz, Ulrich Hofmann, Gustavo Campos Ramos

×

Abstract

BACKGROUND Impaired T cell immunity in transplant recipients is associated with infection-related morbidity and mortality. We recently reported the successful use of adoptive T cell therapy (ACT) against drug-resistant/recurrent cytomegalovirus in solid-organ transplant recipients.METHODS In the present study, we used high-throughput T cell receptor Vβ sequencing and T cell functional profiling to delineate the impact of ACT on T cell repertoire remodeling in the context of pretherapy immunity and ACT products.RESULTS These analyses indicated that a clinical response was coincident with significant changes in the T cell receptor Vβ landscape after therapy. This restructuring was associated with the emergence of effector memory T cells in responding patients, while nonresponders displayed dramatic pretherapy T cell expansions with minimal change following ACT. Furthermore, immune reconstitution included both adoptively transferred clonotypes and endogenous clonotypes not detected in the ACT products.CONCLUSION These observations demonstrate that immune control following ACT requires significant repertoire remodeling, which may be impaired in nonresponders because of the preexisting immune environment. Immunological interventions that can modulate this environment may improve clinical outcomes.TRIAL REGISTRATION Australian New Zealand Clinical Trial Registry, ACTRN12613000981729.FUNDING This study was supported by funding from the National Health and Medical Research Council, Australia (APP1132519 and APP1062074).

Authors

Corey Smith, Dillon Corvino, Leone Beagley, Sweera Rehan, Michelle A. Neller, Pauline Crooks, Katherine K. Matthews, Matthew Solomon, Laetitia Le Texier, Scott Campbell, Ross S. Francis, Daniel Chambers, Rajiv Khanna

×

Abstract

Asthma is a heterogeneous syndrome that has been subdivided into physiologic phenotypes and molecular endotypes. The most specific phenotypic manifestation of asthma is indirect airway hyperresponsiveness (AHR), and a prominent molecular endotype is the presence of type 2 inflammation. The underlying basis for type 2 inflammation and its relationship to AHR are incompletely understood. We assessed the expression of type 2 cytokines in the airways of subjects with and without asthma who were extensively characterized for AHR. Using quantitative morphometry of the airway wall, we identified a shift in mast cells from the submucosa to the airway epithelium specifically associated with both type 2 inflammation and indirect AHR. Using ex vivo modeling of primary airway epithelial cells in organotypic coculture with mast cells, we show that epithelial-derived IL-33 uniquely induced type 2 cytokines in mast cells, which regulated the expression of epithelial IL33 in a feed-forward loop. This feed-forward loop was accentuated in epithelial cells derived from subjects with asthma. These results demonstrate that type 2 inflammation and indirect AHR in asthma are related to a shift in mast cell infiltration to the airway epithelium, and that mast cells cooperate with epithelial cells through IL-33 signaling to regulate type 2 inflammation.

Authors

Matthew C. Altman, Ying Lai, James D. Nolin, Sydney Long, Chien-Chang Chen, Adrian M. Piliponsky, William A. Altemeier, Megan Larmore, Charles W. Frevert, Michael S. Mulligan, Steven F. Ziegler, Jason S. Debley, Michael C. Peters, Teal S. Hallstrand

×

Abstract

Molecular heterogeneity of endothelial cells underlies their highly specialized functions during changing physiological conditions within diverse vascular beds. For example, placental spiral arteries (SAs) undergo remarkable remodeling to meet the ever-growing demands of the fetus — a process which is deficient in preeclampsia. The extent to which maternal endothelial cells coordinate with immune cells and pregnancy hormones to promote SA remodeling remains largely unknown. Here we found that remodeled SAs expressed the lymphatic markers PROX1, LYVE1, and VEGFR3, mimicking lymphatic identity. Uterine natural killer (uNK) cells, which are required for SA remodeling and secrete VEGFC, were both sufficient and necessary for VEGFR3 activation in vitro and in mice lacking uNK cells, respectively. Using Flt4Chy/+ mice with kinase inactive VEGFR3 and Vegfcfl/fl Vav1-Cre mice, we demonstrated that SA remodeling required VEGFR3 signaling, and that disrupted maternal VEGFR3 signaling contributed to late-gestation fetal growth restriction. Collectively, we identified a novel instance of lymphatic mimicry by which maternal endothelial cells promote SA remodeling, furthering our understanding of the vascular heterogeneity employed for the mitigation of pregnancy complications such as fetal growth restriction and preeclampsia.

Authors

John B. Pawlak, László Bálint, Lillian Lim, Wanshu Ma, Reema B. Davis, Zoltán Benyó, Michael J. Soares, Guillermo Oliver, Mark L. Kahn, Zoltán Jakus, Kathleen M. Caron

×

Abstract

Macrophages are important in mounting an innate immune response to injury as well as in repair of injury. Gene expression of Rho proteins is known to be increased in fibrotic models; however, the role of these proteins in idiopathic pulmonary fibrosis (IPF) is not known. Here, we show that BAL cells from patients with IPF have a profibrotic phenotype secondary to increased activation of the small GTPase Rac1. Rac1 activation requires a posttranslational modification, geranylgeranylation, of the C-terminal cysteine residue. We found that by supplying more substrate for geranylgeranylation, Rac1 activation was substantially increased, resulting in profibrotic polarization by increasing flux through the mevalonate pathway. The increased flux was secondary to greater levels of acetyl-CoA from metabolic reprogramming to β oxidation. The polarization mediated fibrotic repair in the absence of injury by enhancing macrophage/fibroblast signaling. These observations suggest that targeting the mevalonate pathway may abrogate the role of macrophages in dysregulated fibrotic repair.

Authors

Jennifer L. Larson-Casey, Mudit Vaid, Linlin Gu, Chao He, Guo-Qiang Cai, Qiang Ding, Dana Davis, Taylor F. Berryhill, Landon S. Wilson, Stephen Barnes, Jeffrey D. Neighbors, Raymond J. Hohl, Kurt A. Zimmerman, Bradley K. Yoder, Ana Leda F. Longhini, Vidya Sagar Hanumanthu, Ranu Surolia, Veena B. Antony, A. Brent Carter

×

Abstract

Atrial fibrillation (AF), defined by disorganized atrial cardiac rhythm, is the most prevalent cardiac arrhythmia worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with AF risk, including the cardiogenic transcription factor genes TBX5, GATA4, and NKX2-5. We report that Tbx5 and Gata4 interact with opposite signs for atrial rhythm controls compared with cardiac development. Using mouse genetics, we found that AF pathophysiology caused by Tbx5 haploinsufficiency, including atrial arrhythmia susceptibility, prolonged action potential duration, and ectopic cardiomyocyte depolarizations, were all rescued by Gata4 haploinsufficiency. In contrast, Nkx2-5 haploinsufficiency showed no combinatorial effect. The molecular basis of the TBX5/GATA4 interaction included normalization of intra-cardiomyocyte calcium flux and expression of calcium channel genes Atp2a2 and Ryr2. Furthermore, GATA4 and TBX5 showed antagonistic interactions on an Ryr2 enhancer. Atrial rhythm instability caused by Tbx5 haploinsufficiency was rescued by a decreased dose of phospholamban, a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, consistent with a role for decreased sarcoplasmic reticulum calcium flux in Tbx5-dependent AF susceptibility. This work defines a link between Tbx5 dose, sarcoplasmic reticulum calcium flux, and AF propensity. The unexpected interactions between Tbx5 and Gata4 in atrial rhythm control suggest that evaluating specific interactions between genetic risk loci will be necessary for ascertaining personalized risk from genetic association data.

Authors

Brigitte Laforest, Wenli Dai, Leonid Tyan, Sonja Lazarevic, Kaitlyn M. Shen, Margaret Gadek, Michael T. Broman, Christopher R. Weber, Ivan P. Moskowitz

×

In-Press Preview - More

Abstract

β-thalassemia is a genetic anemia caused by partial or complete loss of β-globin synthesis leading to ineffective erythropoiesis and RBCs with short life-span. Currently, there is no efficacious oral medication modifying anemia for patients with beta-thalassemia. The inappropriately low levels of the iron regulatory hormone hepcidin enable excessive iron absorption by ferroportin, the unique cellular iron exporter in mammals, leading to organ iron overload and associated morbidities. Correction of unbalanced iron absorption and recycling by induction of hepcidin synthesis or treatment with hepcidin mimetics ameliorates β-thalassemia. However, hepcidin modulation or replacement strategies currently in clinical development all require parenteral drug administration. We identified oral ferroportin inhibitors by screening a library of small molecular weight compounds for modulators of ferroportin internalization. Restricting iron availability by VIT-2763, the first clinical stage oral ferroportin inhibitor, ameliorated anemia and the dysregulated iron homeostasis in the Hbbth3/+ mouse model of beta-thalassemia intermedia. VIT-2763 not only improved erythropoiesis but also corrected the proportions of myeloid precursors in spleens of Hbbth3/+ mice. VIT-2763 is currently developed as an oral drug targeting ferroportin for the treatment of β-thalassemia.

Authors

Vania Manolova, Naja Nyffenegger, Anna Flace, Patrick Altermatt, Ahmet Varol, Cédric Doucerain, Hanna Sundstrom, Franz Dürrenberger

×

Abstract

Vascular Ehlers-Danlos syndrome (vEDS) is an autosomal-dominant connective tissue disorder caused by heterozygous mutations in the COL3A1 gene, which encodes the pro-alpha 1 chain of collagen III. Loss of structural integrity of the extracellular matrix is believed to drive the signs and symptoms of this condition, including spontaneous arterial dissection and/or rupture, the major cause of mortality. We created two mouse models of vEDS that carry heterozygous mutations in Col3a1 that encode glycine substitutions analogous to those found in patients, and showed that signaling abnormalities in the PLC/IP3/PKC/ERK pathway (phospholipase C/inositol 1,4,5-triphosphate/protein kinase C/extracellular signal-regulated kinase) are major mediators of vascular pathology.Treatment with pharmacologic inhibitors of ERK1/2 or PKC-beta prevented death due to spontaneous aortic rupture. Additionally, we found that pregnancy- and puberty-associated accentuation of vascular risk, also seen in vEDS patients, is rescued by attenuation of oxytocin and androgen signaling, respectively. Taken together, our results provide evidence that targetable signaling abnormalities contribute to the pathogenesis of vEDS, highlighting unanticipated therapeutic opportunities.

Authors

Caitlin J. Bowen, Juan Francisco Calderón Giadrosic, Zachary Burger, Graham Rykiel, Elaine C. Davis, Mark R. Helmers, Kelly Benke, Elena Gallo MacFarlane, Harry C. Dietz

×

Abstract

Recent occurrences of filoviruses and the arenavirus Lassa virus (LASV) in overlapping endemic areas of Africa highlight the need for a prophylactic vaccine that would confer protection against all of these viruses that cause lethal hemorrhagic fever (HF). We developed a quadrivalent formulation of Vesiculovax that contains recombinant vesicular stomatitis virus (rVSV) vectors expressing filovirus glycoproteins and also contains a rVSV vector expressing the glycoprotein of a lineage IV strain of LASV. Cynomolgus macaques were vaccinated twice with the quadrivalent formulation, followed by challenge 28 days after the boost vaccination with each of the three corresponding filoviruses (Ebola, Sudan, Marburg) or a heterologous contemporary lineage II strain of LASV. Serum IgG and neutralizing antibody responses specific for all four glycoproteins were detected in all vaccinated animals. A modest and balanced cell-mediated immune response specific for the glycoproteins was also detected in most of the vaccinated macaques. Regardless of the levels of total glycoprotein-specific immune response detected after vaccination, all immunized animals were protected from disease and death following lethal challenges. These findings indicate that vaccination with attenuated rVSV vectors each expressing a single HF virus glycoprotein may provide protection against those filoviruses and LASV most commonly responsible for outbreaks of severe HF in Africa.

Authors

Robert W. Cross, Rong Xu, Demetrius Matassov, Stefan Hamm, Theresa E. Latham, Cheryl S. Gerardi, Rebecca M. Nowak, Joan B. Geisbert, Ayuko Ota-Setlik, Krystle N. Agans, Amara Luckay, Susan E. Witko, Lena Soukieh, Daniel J. Deer, Chad E. Mire, Heinz Feldmann, Christian Happi, Karla A. Fenton, John H. Eldridge, Thomas W. Geisbert

×

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is considered to be a highly immunosuppressive and heterogenous neoplasm. Despite improved knowledge regarding the genetic background of the tumor and better understanding of the tumor microenvironment, immune checkpoint inhibitor therapy (targeting CTLA4, PD1, PDL1) has not been very successful against PDAC. The robust desmoplastic stroma, along with an extensive extracellular matrix (ECM) that is rich in hyaluronan, plays an integral role in this immune evasion. Hexosamine biosynthesis pathway (HBP), a shunt pathway of glycolysis, is a metabolic node in cancer cells that can promote survival pathways on one hand and influence the hyaluronan synthesis in the ECM on the other. The rate-limiting enzyme of the pathway, glutamine-fructose amidotransferase (GFAT1), uses glutamine and fructose 6-phosphate to eventually synthesize UDP-GlcNAc. In the current manuscript, we targeted this glutamine-utilizing enzyme by a small molecule glutamine analog (6-diazo-5-oxo-L-norleucine or DON). Our results showed that DON decreased the self-renewal potential and metastatic ability of tumor cell. Further, treatment with DON decreased hyaluronan and collagen in the tumor microenvironment, leading to an extensive remodeling of the ECM, and an increased infiltration CD8+ T-cells. Additionally, treatment with DON sensitized pancreatic tumors to anti-PD1 therapy resulting in tumor regression and prolonged survival.

Authors

Nikita S. Sharma, Vineet K. Gupta, Vanessa T. Garrido, Roey Hadad, Brittany C. Durden, Kousik Kesh, Bhuwan Giri, Anthony Ferrantella, Vikas Dudeja, Ashok Saluja, Sulagna Banerjee

×

Abstract

Background: Proteinuria is considered as an unfavorable clinical condition that accelerates renal and cardiovascular disease. However, it is not clear if all forms of proteinuria are damaging. Mutations in CUBN cause Imerslund-Gräsbeck syndrome (IGS) featured by intestinal malabsorption of vitamin B12 and in some cases proteinuria. CUBN encodes for cubilin, an intestinal and proximal tubular uptake receptor containing 27 CUB domains for ligand binding. Methods: We used next-generation sequencing for renal disease genes to genotype cohorts of patients with suspected hereditary renal disease and chronic proteinuria. CUBN variants were analyzed using bioinformatics, structural modeling and epidemiological methods. Results: We identified 39 patients, in whom biallelic pathogenic variants in the CUBN gene are associated with chronic isolated proteinuria with childhood onset. Since the proteinuria displayed a high proportion of albuminuria, glomerular diseases such as steroid-resistant nephrotic syndrome or Alport syndrome were often the primary clinical diagnosis, motivating renal biopsies and proteinuria-lowering treatments. Yet, renal function was normal in all cases. By contrast, we did not find any biallelic pathogenic CUBN variants in patients with reduced renal function or focal segmental glomerulosclerosis. Unlike the more N-terminal IGS mutations, 37 out of the 41 proteinuria-associated CUBN variants led to modifications or truncations after the vitamin B12-binding domain. Finally, we show that four C-terminal CUBN variants are associated with albuminuria and moderately increased GFR in meta-analyses of large population-based cohorts. Conclusions: Collectively, our data suggest an important role for the C-terminal half of cubilin in renal albumin reabsorption. Albuminuria due to reduced cubilin function could be an unexpectedly common benign condition in humans that may not require any proteinuria-lowering treatment or renal biopsies.

Authors

Mathilda Bedin, Olivia Boyer, Aude Servais, Yong Li, Laure Villoing-Gaudé, Marie-Josephe Tête, Alexandra Cambier, Julien Hogan, Veronique Baudouin, Saoussen Krid, Albert Bensman, Florie Lammens, Ferielle Louillet, Bruno Ranchin, Cecile Vigneau, Iseline Bouteau, Corinne Isnard-Bagnis, Christoph J. Mache, Tobias Schäfer, Lars Pape, Markus Gödel, Tobias B. Huber, Marcus Benz, Günter Klaus, Matthias Hansen, Kay Latta, Olivier Gribouval, Vincent Morinière, Carole Tournant, Maik Grohmann, Elisa Kuhn, Timo Wagner, Christine Bole-Feysot, Fabienne Jabot-Hanin, Patrick Nitschké, Tarunveer S. Ahluwalia, Anna Köttgen, Christian Brix Folsted Andersen, Carsten Bergmann, Corinne Antignac, Matias Simons

×

Advertisement

October 2019

October 2019 Issue

On the cover:
Targeting APOC3 prevents diabetes-associated atherogenesis

The risk of developing atherosclerosis and cardiovascular disease is greater in patients with type 1 diabetes mellitus (T1DM), and the roles of lipoprotein-regulating proteins like APOC3 are relatively unexplored. In this issue, Kanter et al. observed that elevated serum APOC3 levels are a strong predictor of coronary artery disease incidents in T1DM patients. An APOC3-targeting antisense oligonucleotide (ASO) mitigated APOC3 elevations in diabetic mouse models as well as prevented accelerated atherogenesis, supporting APOC3-targeting strategies as potential interventions for T1DM-associated cardiovascular disease. On the cover, a mouse atherosclerotic lesion (Movat’s pentachrome stain), an ECG trace, and a heart-shaped lipoprotein particle highlight APOC3’s role in T1DM-linked cardiovascular disease. Image credit: Jenny Kanter and Karin Bornfeldt.

×

October 2019 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Mechanisms Underlying the Metabolic Syndrome

Series edited by Philipp E. Scherer

Obesity often occurs with a quintessential array of metabolic abnormalities: elevations in blood pressure, visceral fat, and circulating blood lipids, and, importantly, insulin resistance. Together, this constellation of conditions constitutes the metabolic syndrome and forecasts an individual’s increased risk of developing cardiovascular diseases and type 2 diabetes. Although metabolic syndrome presents as dysfunction across multiple tissues, its onset stems from pathological increases in adipose tissue. The 9 review in this series, conceptualized by series editor Philipp Scherer, delve into the complex biology underlying the metabolic syndrome. These reviews address adipocyte and beta cell dysfunction in the metabolic syndrome; the functions of adipose tissue fibrosis, the microbiome, and exosomal communication in obesity; and the concepts we use to define metabolic health.

×